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The heating of a semi-infinite layer of particles adjacent to a heated
surface is investigated analytically in a one-dimensional approxima-
tion. The conditions in which such a system can be regarded as ahomo-
geneous isotropic medium are found.

The heat from the surface of a body immersed in a
fluidized bed of finely granular material is given up to
packets of particles in contact with the surface. These
particles are periodically dislodged by ascending gas
bubbles and replaced by new ones. Mickley and Fair-
banks [1], who were the first to present an analytical
description of this process, regarded the packet as a
semi-infinite homogeneous mass witha surface temper-
ature tw, which remained constant during the entire
time of heating of the packet. Accordingly, theinstan-
taneous (at time 1) value of the coefficient of heat trans-
fer between the body and the fluidized bed is

— —1
Ay = RA ! = (?Mc.p Cmpc,p)1/2 (RT) /2,

and the mean coefficient during the time 7. of contact
" of the packet with the surface is

@ =05R =0.5(hcp crupe,p)” (at) ™

It follows from these expressions that the heat
transfer coefficients o and o' tend asymptotically
to infinity when 7 — 0. Yet it is well known [2, 3]

; that when the time of contact is reduced to a certain
value the heat transfer coefficient ceases to increase
and tends towards a limiting (ultimate) value, which de~
pends on the thermal resistance between the surface of
the body and the first row of particles in contact with

.it. To eliminate this contradiction we [4] introduced a
Mcontact thermal resistance" R,,,. Then

— l_ fe_’- ) L Ry 1 . 1
O = Rmnexp [( an) . ] erfc ( R VE) (1)

The mean value o' in time 7, can be found by integra-
tion by parts:

, 1 A
a z?'g\ath:H’ (2)

A= _l_ 2 _ . = Rc . 21
" (expyterficy—D+2;, y Y Y
The function exp y? erfe y is tabulated in [5]. Thevalues
of the coefficient A are given in Table 1.
To simplify the calculations we suggested {4] that
the solution (1) should be replaced by the simpler ap-
proximate formula

Oy == ﬁ(Rcon‘*' R?L)_l' .

Calculations showed that the correction factor g does
not exceed 1,20, Gel'perin, Ainghtein, and Zaikovskii
drew attention to the fact that the mean values of the
heat transfer coefficient can be calculated in a similar
way: a'= (Rggp + 0.5 Rc)'l. The deviation of the values
calculated from this formula from the values given by
(2), (29 does not exceed 5%, so that no correction

is necessary. If one considers that for part of thetime
fo the heat transfer surface is not in contact with the
particles, but with a gas bubble (at this instant heat
transfer is negligible), then, if the mean time of con-
tact of the packet Tc = (1 — f¢) ¢t~ ! is known, it is easy
to calculate the coefficient of heat transfer from the
fluidized bed to the submerged body:

A 1= (3)

=(I—fo) 5= '
o= fo) R, (0.5+Reon/R) R,

Calculation from (3) gives quite good agreement
with experiment for a fluidized bed of small particles,
but for a bed of larger particles (d = 0.3 mm) there
are deviations [4]. These deviations are due to the fact
that during the time of contact of the packet with the
surface (usually less than 0.5~1 sec) only a thin layer
of the material, with a thickness of only a few particle
diameters, is heated (or cooled). With such conditions
a discrete medium composed of individual particles and
interstitial gas cannot be regarded as homogeneous.

We will determine the conditions in which the packet
of particles in contact with the surface can be regarded
as a homogeneous isotropic medium. To do this we con~
sider an equivalent system (see Fig. 1,b) in which the
medium consists of layers of thickness d separated from
one another (thermally) by contact thermal resistances
I'cons Which are assumed to be independent of time. The
thermal conductivity of the layers is assumed to be in-
finitely high and the product of their density and heat
capacity is assumed to be equal to that of the contin-
uous phase of the fluidized bed. During the heating of
any i-th layer it obtains heat from the (i — 1)th layer

and gives it up to the (i + 1)th layer. Hence,
tig—1t  b—fin dt,
i it i — ; i 5 (4)
Tcon Teon mPep dt
We introduce
t—t,
i = s @ = I ]
=1 @.=1)
x = 27 __ QTAC.p i‘ _ QFO- (4')

- 2
CmPe.p dreon CmPe.p d

In the last relationship we have used Ae.p = d/Toon-
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Then

1 X
6 = Jexp (—X)f exp (x) (O,—; + 8,,,) dx. (5)
[

The solution of a similar problem is known [5]. In
the symbols used here the temperature of the first row
of particles is given by the expression

= [ (o 00 5F =
X
0

1

= X exp(—x2)z—t Jy(x2) dz,

1]

where J;(x) is a Bessel function of imaginary argument
of the first kind and first order. Using tables of inte-
grals ([7], p- 728) we can easily find

X 3
o= 2F2(~2~, I; 3, 2 —2x)-

Expanding the generalized hypergeometric series ;F;
([7), p- 1059) we can finally write

(k+ 1/2)1

=2 N _krle G\
o 1/21§(k+1)x(k+2)z e

(—2x).

This method of solution is suitable only in the case
where the thermal resistances between all the layers
are the same and equal to the thermal resistance be-
tween the plate and the first layer. In addition, thissol-
ution is difficult to visualize. Hence, we find the tem-
perature of the first row of particles by the method of
successive approximations. For the first approximation
we take ® = 0. Then, since'®l = @y = 1, weobtain
from (5) -

0, = — [l—exp(—x)]. (6)

1
2

In the second approximation ®§I = 0. From (5) we find

8y'= *;* exp (—x)f exp (x) (61 + 8%) dx =

~21? {1— exp(—x) —exp (—x) x].

From @}l and @y = 1 we find @FI from (5), and so on.

Table 1
Values of Coefficient A from Formula {2')

R. \
=gV 0.130.25} 0.4 oss\ossl 0,8\0.95
A 10177‘0355‘0531068;0765!0363*0955
P 12 1.5 | 1.8 | 2.1 |2.4 {30 | o
4 1.08 | 1.19{1.28 {1.35 [1.42 |[1.51 | 2

'In the fourth approximation, for instance,

—1——[1 —exp (—x)] +

,81V=
: 2
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+ —g[i"exl’(—‘x)j 1+“1';—4-*2—i-”+

3]

> N x
+—64-[1*exp(-x)(lf ”+...+ 61)}- (1)

+'1—6—{1~EKP(“X)(I+‘IT+

The structure of the series is such that in each succes-
sive approximation one term is added and the ones al-
ready found are unaltered. Hence, the third and second
approximations can be found from (7) by discardingthe
last, or last two, expressions in the square brackets.

8 o Ednd
() /__][,ﬂ‘i A
- -
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Fig. 1. Dimensionless temperature @ of
the first row of particles in contact with
the surface as a function of the dimen-
sionless time r (the dimensionless com~
plex x is plotted on the x-axis)., The
equivalent system (b} replacing the ac~
tual regular arrangement of the parti-
cles {a) is shown on the right. The
solid lines give the approximation
ffrom below" [Eqg. (7)] and the dashed
lines give the approximation "from
above" [Eq. (8)]. The figures on the
curves denote the number of the ap-
proximation. The doi- dash line re-
presents ®,; =erfc — )/2_ [Eg. {8))-

In the figure the first, second, and fourth approxima-
tions are represented by solid lines. It will be
shown below that further approximations are unneces-
sary-

1t is often assumed [2, 6] that when the time of con-
tact of the packet with the surface is short all the heat
is absorbed by the first row of particles and the pre-
sence of the second row does not affect the process.
This is actually equivalent to the assumption that there
is perfect heat insulation between these rows. Then

8 — 1 —exp {(~x/2).

It is more suitable as a first approximation "from
above" to use x rather than x/2 for the exponent.
Then, for the last layer

8, = exp(—x) 5' exp (x)8,—; dx
) \
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Table 2

Values of Dimensionless Instantaneous Heat Transfer
Coefficient a7d/Ac,p from Different Formulas

~ Values of otzd/); p ~for x equal to
From formula

0 |02 {04 |06 | 10 | 15 | 30 50
Vempg.p &/nthe.p o | 1.7811.26 |1/03 |0.8 10.65 | 0.46 | 0.11
@, dfkcp=1—6; 1 |0.91]0.835|0.7750.673/0.585| 0.44 | 0.11

for'6; from (o") .
from. (10) 1 0.97 10.88 ;0.8 |0.69 j0.58 | 0.44 | 0,11
from (11) 1 0.91 10.83 |0.77 10.72 {0.61 | 0.52 ) 0.5
from (1) 2 1.1 1091 {0.8 [0.69 [0.58 { 0,44} 0.11
Ry /Reon=1V 2=x 0 1.12 {1.58 [1.94 |2.5 |3.06 | 4.34 |17.7

For all the other layers below the i-th the temperature,
as before, is given by (5), since the layers make ther-
mal contact on both sides. By a method similar to the
previous one of successive approximations we obtain a
series of values of ®;. For instance, in the fifth ap-
proximation (further ones are usually unnecessary)

6) = 1—exp (—x) —exp (—x) x

I
I

L EATRNEIS
{2 +2!]+22(1+2)X
x3 x* 1 1 X x8
X[BT*‘”&TFE?("W?)[B#?!]*
1 1 1 x7 x8
+727(‘+34“+3?)[7+?z]}'

As before, each previous approximation can be obtained
from (8) by successively discarding the last term of the
sum in the braces. The first three approximations cal-
culated by this method are shown by dashed lines in the
figure.

The figure shows that calculations from (7) and (8)
give the same results, beginning with the fourth approx-
imation (in the range of values of x of interest for a
fluidized bed). When x < 0. 5 the solution is given al-
most exactly by the first approximation "from below"
[Eg. (6)], and when x is large (x > 1) the solution is

_given by an equation giving the change in temperature
with time at a distance d from the surface of the body,
if the multilayer system is regarded as a homogeneous
medium with parameters cp,, Pepr and Ag p = d/Tcon
(this is easily obtained from the kmown solution of the
problem [5] of heating of a homogeneous mass):

(8)

0, = eric V}Q} . 9)
The instantaneous value of the heat transfer coeffi-
‘cient is a7 = (1 ~ 8,)rghy. The difference (1 — @,) found
from (9) for x < 1 also differs slightly from the value
found from (8) or (7) (compare the solid and dot~
dash lines in the figure for x < 1). Hence, for the cal~
culation of ®;, which is contained in oy, Eq. (9) can be
used in the whole temperature range. Using (9) and ex-
panding the complex x contained in it, we obtain

——~—L——Cmpc‘ d2= l/__T_'.
) dth, ]/ 5,

a.d

— = erf 10
Wt (10)

When x is small (< 0.5) a more accurate value of
@y is given by Eq. (6) (see Fig. 1) and, hence, ar,
obtained from (6), is also more accurate:

[l + exp(— ). (11)

X
o 2

It is of interest to note that this quantity differs
from the corresponding expressions obtained in [2, 6]
for the case where the temperature of the second row
during the time of contact of the packet with the sur-
face is unaltered. This means that even with such con-
ditions it is necessary to take into account the heat
transfer from the first row of particles to the second
on the assumption that the temperature of the second
is equal to the initial temperature of the packet.

In [4] it was assumed in the deduction of the formu-
la for Reon that Reon = d/2A¢ p = Toon/2. If we sub-
stitute this expression for Rgpop in (1), then formula (1)
will take the form

ayd/hep =2 exp (2x)eric} 2x. (1)

Table 2 compares the results of calculation from the
different formulas. This table also gives the values of
R)/Rgop on the assumption that Roon = 0.5T¢con.

The table shows that formula (1') gives a satisfac-
tory approximation for x = (0,5-1), i.e., for R)/Rgon >
> 2-2.5. For these values the "continuous" phase
of a fluidized bed can be regarded as a homogeneous
medium, and the heat transfer can be calculated from
formula (3). When x < 0.5 the "continuous" phase
must be regarded as a discrete medium and Eq. (11)
should be used for the calculation.

NOTATION

ar, @’, « are the instantaneous, mean (during time
of contact of packet), and effective (allowing for time
of contact with bubble) heat transfer coefficients; g is
the correction factor (g = 1-1,2); 7‘c.p and Pe.p are
the thermal conductivity and density of continuous
phase of the fluidized bed; ¢4 is the frequency of
change of packets of particles at the surface; 7 and 7,
are the variable time and time of contact of the packet
with the surface; @ is the dimensionless excess tem-
perature of i-th layer in j-th approximation; A is the
dimensionless coefficient [formula 2")]; ¢y, and d are
the specific heat and diameter of particles of the mate-
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rial; f, is the fraction of time during which the sur-
face is in contact with gas bubbles; R, and R are the
thermal resistances of the packet at instants 7 and Tes
Rgonis the contact thermal resistance;reqy is the ther-
mal resistance between rows of particles; ty, tj are
the initial and instantaneous temperatures of i-th layer
of particles; ty is the temperature of surface; x and y
are the dimensionless complexes [formulas (2') and
(4"]; Fo is the Fourier number.
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